Crystal Orientation Relationships and Reaction Mechanism in Solid State Reaction.
نویسندگان
چکیده
منابع مشابه
Synthesis & Characterization of CaB4O7 Powder by Solid-State Reaction
The synthesis of calcium tetraborate was investigated in a temperature ranging from 800℃ to 900℃ using the solid-state reaction method. The synthesis was done using ammonium tetraborate tetrahydrate as the source of boron. At temperatures of 800 ℃ and 880 ℃, the mixed phases from different compounds were formed. At the optimum temperature of 840℃, the mixed phase was only composed of meta and t...
متن کاملIon-beam Mixing and Solid-state Reaction
Vapor-deposited Zr-Fe multilayered thin films with various wavelengths and of overall composition either 50% Fe or Fe-rich up to 57 % Fe were either irradiated with 300 keV Kr ions at temperatures from 25K to 623 K to fluences up to 2 x 10l6 cm-2, or simply annealed at 773K in-situ in the Intermediate Voltage Electron Microscope at Argonne National Laboratory. Under irradiation, the final react...
متن کاملSynthesis and Processing of SnO2, CaSnO3 and Ca2SnO4 Nanopowders by Solid-State Reaction Technique
The nanopowders of SnO2, CaSnO3 and Ca2SnO4 in the size rang of 5-70 nm have been prepared using solid-state reaction technique. The technique is convenient and inexpensive in comparison to the conventional routes of compound prepared and processing where, many steps of mixing and annealing are i...
متن کاملFormation of Cocrystal Nanorods by Solid-State Reaction of Tetracyanobenzene in 9-Methylanthracene Molecular Crystal Nanorods
The reaction of single-component molecular crystal nanorods with a second species to form cocrystal nanorods is described. Single-component crystalline nanorods, composed of 9-methylanthracene (9-MA), are grown in a porous anodic aluminum oxide template. These templated rods are then exposed to a suspension of 1,2,4,5-tetracyanobenzene (TCNB) in water, which slowly diffuses into the 9-MA rods o...
متن کاملSolid state synthesis, crystal structure, evaluation of direct and indirect band gap energies and optimization of reaction parameters for As2Ni3O8 nanomaterials
Nanostructured As2Ni3O8 samples were synthesized via facile solid-state reactions at 850 and 950 °C for 8h using As2O3, Ni(CH3COO)2.2H2O and Ni(NO3)2.6H2O raw materials. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique and fourier-transform infrared (FTIR) spectroscopy. The rietveld analyses showed that the obtained materials were crystallized well i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mineralogical Society of Japan
سال: 1995
ISSN: 1883-7018,0454-1146
DOI: 10.2465/gkk1952.24.235